
5.5 Integration by Substitution

In this section we use the method of substitution to take expressions which we do not know 
how to integrate and write them as simpler expressions which we do knowhow to integrate.

Remember the chain rule? d
dx

Fgx  F gx  g x

If we rewrite this equation using integral notation, it looks something like this:

F gx  g xdx  Fgx  C

The integrand looks kind of messy, but it can be easily integrated because of

the special form that it is in.

In this section we will consider integrals that can be expressed in the form  fgx  g xdx.

Notice that this integrand has a little f rather than a big F .

The function f will usually be a familiar function whose antiderivative F we can readily find.

If F is any antiderivative of f, we will be able to write  fgx  gxdx  Fgx  C.

Example 1 For each expression, find fx and gx so that the expression is in the form

kfgx  g x for some constant k.

a. sin3x 2  4  6x b. x 2  5x54x  10

Let gx  3x 2  4.

Then g x  6x, so if

we let fx  sinx, then

fgx  g x  sin3x 2  4  6x

The constant k is equal to 1.

c. sin32xcos2x d. x 3 x 4  16



In practice, we will make a change of variables to perform the integration.

If we are trying to integrate  fgx  gxdx, we usually will let u  gx.

Then du
dx

 g x, so that in differential notation we have du  g xdx.

Substituting this into the original integrand gives us  fudu.

If F is any antiderivative of f, we can integrate  fudu as follows:

 fudu  Fu  C

Since the original integrand was expressed in terms of x, we will want

to leave our final answer that way.

 fgx  g xdx   fudu  Fu  C  Fgx  C

Example 2 Rewrite each integral. First, factor out an appropriate constant if necessary

to write the integral in the form k  fgx  g xdx. Let u  gx, find du
dx

 g x,

and express it in the form du  gxdx so that k  fgx  g xdx is rewritten as k  fudu.

a.  sin3x 2  46xdx b. x 2  5x54x  10dx

Let u  3x 2  4.

Then du
dx

 6x.

and du  6xdx.

So  sin3x 2  46xdx   sinudu.

c.  sin32xcos2xdx d.  x 3 x 4  16dx



Integration by Substitution

Step 1. Make a choice for u, say u  gx.

Step 2. compute du
dx

 gx.

Step 3. Make the substitution u  gx, du  g xdx.

At this stage, the entire integral must be in terms of u; no x’s should remain.

If this is not the case, try a different choice of u.

Step 4. Evaluate the resulting integral, if possible.

Step 5. Replace u by gx, so that the final answer is in terms of x.

Example 3 Evaluate each integral.

a. 5x 2  3x  2910x  3dx b.  x 3 cos6x 4dx

c.  cosx sinx dx d.  3x

x  2
dx



 

Evaluating Definite Integrals by Substitution

Theorem If g is continuous on a,b and f is continuous and has an antiderivative

on an interval containing the values of gx for a  x  b, and u  gx, then


a

b

fgxgxdx  
ga

gb
fudu.

Example 4 Evaluate 
/6

3/2

6sin2 cosd.

Make the substitution u  sin, and replace the limits by u  sin 
6

and u  sin 3
2

.

Then evaluate the resulting definite integral in the variable u.

Example 5 Evaluate each definite integral.

a. 
1

2 72xdx

4x 2  13
b. 

7

12 x 2dx

x  3



7.1. Substitution Rule 259

Exercise 7.1.4

∫
1

3
√

1−5t
dt

Exercise 7.1.5

∫
sin3 xcosxdx

Exercise 7.1.6

∫
x
√

100− x2 dx

Exercise 7.1.7

∫
x2

√
1− x3

dx

Exercise 7.1.8

∫
cos(πt)cos

(
sin(πt)

)
dt

Exercise 7.1.9

∫
sinx

cos3 x
dx

Exercise 7.1.10

∫
tanxdx

Exercise 7.1.11

∫ π

0
sin5(3x)cos(3x)dx

Exercise 7.1.12

∫
sec2 x tanxdx

Exercise 7.1.13

∫ √
π/2

0
xsec2(x2) tan(x2)dx

Exercise 7.1.14

∫
sin(tanx)

cos2 x
dx

Exercise 7.1.15

∫ 4

3

1

(3x−7)2
dx

Exercise 7.1.16

∫ π/6

0
(cos2 x− sin2 x)dx

Exercise 7.1.17

∫
6x

(x2−7)1/9
dx

Exercise 7.1.18

∫ 1

−1
(2x3−1)(x4−2x)6 dx

Exercise 7.1.19

∫ 1

−1
sin7 xdx

Exercise 7.1.20

∫
f (x) f ′(x)dx


