
2.2 Finding Limits Graph ically and Numerically

LIMITS (AN INFORMAL VIEW). If the values of fx can be made as close as we like to L

by making x sufficiently close to a (but not equal to a), then we write
lim
xa

fx  L

which is read ”the limit of fx as x approaches a is L.”

Example 1 Make a conjecture about the value of the limit lim
x2

3x  6

4x  4  2
.

The function fx  3x  6

4x  4  2
is undefined at x  2, but the values

of fx appear to be approaching a particular number as x approaches 2.

This number is ”the limit of fx as x approaches 2.” Find it.

lim
x2

fx  lim
x2

3x  6

4x  4  2

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Example 2 Make a conjecture about the value of the limit lim
x0

sinx
x .

Let fx  sinx
x . Find lim

x0
fx. lim

x0

sinx
x 
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Example 3 Make a conjecture about the value of the limit lim
x0

sin 
x .

lim
x0

sin 
x 
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A Formal Definition of Limit

Intuitively speaking, the limit of a function f at a number c in its domain is the number L

that the values of fx are approaching as the values of x are approaching c.

Let fx be defined for all x in some open interval containing the number c,

with the possible exception that fx need not be defined at c.

The statement lim
xc

fx  L means that for each number   0 there exists

a number   0 such that if 0  |x  c|  , then |fx  L |  


