Manage Application: ALG Textbook Transformation Grants Round 8

Award Cycle: Round 8

Internal Submission Deadline: Sunday, December 11, 2016

Application Title: 304

Application ID: #001300

Submitter First Name: Sharryse

Submitter Last Name: Henderson

Submitter Title: Professor

Submitter Email Address: shenders@highlands.edu

Submitter Phone Number: 678-872-8112

Submitter Campus Role: Other

Applicant First Name: Sarah

Applicant Last Name: Tesar

Co-Applicant Name(s): Dr. Allen Easton

Applicant Email Address: stesar@highlands.edu

Applicant Phone Number: 678-872-8070

Primary Appointment Title: Associate Professor of Chemistry

Institution Name(s): Georgia Highlands College

Submission Date: Monday, December 12, 2016

Team Members (Name, Title, Department, Institutions if different, and email address for each):

Allen Easton, Ph.D., Associate Professor of Chemistry, Division of Natural Science and Physical Education, Georgia Highlands College, aeaston@highlands.edu

Sarah Tesar, Ph.D., Assistant Professor of Chemistry, Division of Natural Science and Physical Education, Georgia Highlands College, stesar@highlands.edu

Erin Kingston, Instructor of Chemistry, Division of Natural Science and Physical Education, Georgia Highlands College, ekingston@highlands.edu

Charles Garrison, Laboratory Coordinator, Division of Natural Science and Physical Education, Georgia Highlands College, cgarrison@highlands.edu
Joseph Collins, Laboratory Coordinator, Division of Natural Science and Physical Education, Georgia Highlands College, jcollins@highlands.edu

Christin Collins, Assistant Librarian of Public Services, Paulding Campus Library, Georgia Highlands College, ccollins@highlands.edu

Sharryse Henderson, Professor of Biology and Science Coordinator, Division of Natural Science and Physical Education, Georgia Highlands College, shenders@highlands.edu

Greg Ford, Ph.D., Dean and Associate Professor, Division of Natural Science and Physical Education, Georgia Highlands College

Sponsor, (Name, Title, Department, Institution):
Renva Watterson, Ed.D., Vice President for Academic Affairs, Georgia Highlands College

Proposal Title: 304

Course Names, Course Numbers and Semesters Offered:

CHEM 1211K – Principles of Chemistry I

CHEM 1212K – Principles of Chemistry II

Both courses are required for science majors and are offered in fall, spring, and summer semesters.

Average Number of Students per Course Section: 23

Number of Course Sections Affected by Implementation in Academic Year: 32

Total Number of Students Affected by Implementation in Academic Year: 736
List the original course materials for students (including title, whether optional or required, & cost for each item):

- Currently required textbook for both courses: Chemistry, 10th Edition with OWLv2 by Whitten, Davis, Peck, and Stanley, hybrid edition. $238.75

Requested Amount of Funding: $29,826

Original per Student Cost: $275.75

Post-Proposal Projected Student Cost: $76.00 - $77.00

Projected Per Student Savings: $180.25

Projected Total Annual Student Savings: $132,664

Creation and Hosting Platforms Used ("n/a" if none):

Desire2Learn (D2L) by Brightspace will be used to share instructional materials with faculty and students within the division.

Furthermore, the following websites will be used to host and share newly created ancillary materials with the public:

1) MERLOT II
2) GALILEO Open Learning Materials repository
3) OpenStax Community Resource Partnership with OER Creative Commons Agreement

Proposal Category: OpenStax Textbooks

Final Semester of Instruction: Fall 2017

Project Goals:

The United State Public Interest Research Group (USPIRG) surveyed college students across the US and concluded that the rising cost of college texts has a direct impact on student enrollment in and progression through college (1). In their report, Fixing the Broken Textbook Market, 65% of those surveyed decided not to purchase a textbook for at least one class and of those students, 94% believed that not purchasing a text would hurt their grade. Nearly half the students surveyed stated that the price of textbooks directly impacted their decision regarding the number and type of courses in which to enroll. Studies have also shown a
correlation between not purchasing textbooks and increased likelihood of failure or withdrawal from courses (2). Furthermore, the Bureau of Labor Statistics reports that the cost of college textbooks has risen three times faster than the rate of inflation in the last 30 years - far outpacing health care expenses and home prices (3). Exacerbating this issue is the fact that only five publishers currently control 85% of the textbook market and the majority of publishers are marketing textbooks to faculty rather than to students who face numerous financial barriers to success in college (4). Obviously, there is a great need to remove the barriers that students face in pursuing higher education particularly in the STEM courses.

To address these barriers to success, our project goals are:

- Decrease the financial burden of students enrolled in CHEM 1211K and CHEM 1212K by adopting and incorporating a no-cost textbook published by OpenStax at Rice University.
- Increase retention and completion of students at Georgia Highlands College by creating and implementing multimedia instructional screencasts to supplement adopted OER for CHEM 1211K and 1212K.
- Increase student access to course materials by offering all course materials in an open format via the course learning management system.
- Survey enrolled students and teaching faculty to determine 1) the ease of availability, 2) quality of resources, and 3) helpfulness of OERs in meeting student learning outcomes.
- Publish all newly created course materials on open resource websites such as MERLOT II, Galileo Open Learning Materials repository, and OpenStax Community Resource Partnership so that they are readily accessible to the public.

Statement of Transformation:

Georgia Highlands College (GHC) is a limited four-year college in the University System of Georgia that serves more than 6000 students throughout northwest Georgia and northeast Alabama. GHC offers transfer associate degree programs, career associate degree programs, and targeted baccalaureate degree programs. GHC has five campuses that provide instruction which allows for a unique opportunity to develop and implement new teaching materials and pedagogy and compare student data across campuses. This multi-site configuration also provides an opportunity to replicate and expand projects across campuses to prove scalability. Specifically, CHEM 1211K and CHEM 1212K constitute a science sequence that satisfies AREA D core curriculum science requirements in the University System of Georgia and the Technical College System of Georgia. Furthermore, CHEM 1211K/1212K are the recommended in all GHC science pathways maps as first and second semester courses for all STEM majors. Altogether, this chemistry sequence serves about 700-800 students per academic year at GHC.

Mean annual household income in the geographic areas served by GHC is about $61,927 (5). According to the 2014-2015 Georgia Highlands College Fact Book, the average student at GHC is a 23.9 year-old female. Furthermore, approximately 45.4% of GHC students are
eligible for Pell Grant. Many students are non-traditional students who are concurrently working a full-time job in addition to scholarly endeavors (6). Low-cost course materials will increase access to the chemistry courses taught at GHC and should lead to a higher rate of utilization of the resources (7). Currently, the cost of course materials for chemistry sequences at GHC use proprietary textbooks packaged together with online homework solutions at a cost of over $238 each. Furthermore, students lose access to the e-text after 18-24 months. The price of course materials makes the course an unnecessarily expensive barrier to the first year of college rather than a valued entry level science course that builds study skills. The course transformation will save students over $132,000 and provide students with a valuable, peer-reviewed, up-to-date reference at no cost.

This grant will fund the replacement of the current proprietary text with a free text and a lower-cost textbook independent homework system. The course redesign will allow students to save money and have future access a valuable reference, one that they will not feel the need to resell to recover funds. Furthermore, this grant will fund the redesign of course materials to complement the OpenStax Chemistry textbook and also the creation of a series of multimedia instructional videos to accompany the OpenStax Chemistry text. Studies have shown that multimedia resources are productive methods of conveying concepts and ideas (8).

Transformation Action Plan:

The action plan will consist of procuring and adopting an OER followed by evaluation of the OER to determine which materials may need to be adapted and whether new instructional materials need to be created in order to support the OER. After implementation, quantitative and qualitative data will be collected to determine the efficacy of the OER and related materials. The following activities will be conducted during the project:

Approval: Team members will submit a formal proposal to the GHC Institutional Review Board (IRB). Pre and post course surveys will be generated and presented to the IRB for approval prior to administration. Semester updates and a final report will be submitted to the IRB so that the college is fully informed about the progress and impact of this project.

Training: Team members will participate in various forms of training prior to and during implementation of this project. At least two team members will travel to Macon to attend the Kick-Off Meeting. Team members will participate in webinars hosted by USG staff on Galileo Open Learning Materials repository. Team members will receive training from OpenStax staff (if it is the chosen OER). Team members will view archived videos from adaptive and authoring software companies available on the ALG Textbook Transformation website in order to identify appropriate software sources and prepare for the creation of multimedia instructional resources.

Review and Adoption: Open Educational Resources will be identified and pooled for review by the team. Possible sources will include OER’s already available through OpenStax, CNX,
Cool4Ed, MERLOT II, Saylor Academy, GALILEO, Lumen Learning, and others. Preference will be given to OpenStax but final decision will be made on the basis of current student learning outcomes for the transformed course(s), applicability in the classroom, and teaching experience of team members.

Evaluation of Selected OER: Once appropriate OER is selected, we will examine how and if these materials can be utilized in both face-to-face and online settings. Materials will then be organized into various areas of specialty and assigned to individual team members for review. Team members will determine if the content area needs to be adapted or if additional resources need to be created.

Adaptation and Creation: Each team member will adapt instructional materials in the content areas to which they are assigned. Any instructional materials found to be lacking, will be created and then evaluated by the team. Team members will create multimedia screencasts for ALL content areas.

Course Syllabi: Master syllabi for each course will be created and made available for faculty and students on D2L. The master syllabi will 1) provide consistency of instruction and assessment in all sections of the course, 2) provide clear instructions on how to access newly created course materials, 3) provide a list of assigned readings and associated deadlines from the OER textbook, and 4) a list of assigned multimedia screencasts and dates of use.

Course Evaluation/Redesign: After use of OER and newly created instructional materials begin, the team will evaluate the effectiveness of the new materials and feasibility for the students. This will include 1) a comparison of grades from when the previous textbook was used and during the incorporation of new materials and 2) distribution of surveys to determine how the students and faculty feel about the implementation and use of the new material. It will also include adjustments in the course material and syllabi, omission of unnecessary material, and creation/adoptions of new material where needed.

Publish: At the conclusion of the grant cycle, all materials created as a result of this project will be published for access by the public on a variety of open resource websites. Some of these websites include: MERLOT II, GALILEO Open Learning Materials repository, and OpenStax Community Resource Partnership.

Each of the following team members will play a vital role in implementing the Transformation Action Plan:

Dr. Sarah Tesar: Co-PI and curriculum expert - will administer project from beginning to end, including: identification and adoption of appropriate OERs, development of related course materials, syllabi revision, administration of surveys and data collection, and creation of the final report. Will also oversee the development of multimedia resources.

Dr. Allen Easton: Co-PI and curriculum expert - will administer the project from beginning to
end, including: identification and adoption of appropriate OERs, development of related course materials, syllabus revision, administration of surveys and data collection, and creation of the final report.

Erin Kingston: Curriculum expert - will participate in the development of multimedia resources, work with library faculty to identify, review, select, and adopt appropriate OERs for CHEM 1211K and 1212K, and assist in the creation of surveys.

Charles Garrison: Curriculum expert - chemistry laboratory coordinator; will develop instructional materials necessary for 1211K and 1212K laboratories. Will aid in development of a master course schedule for CHEM 1211K Laboratory.

Joseph Collins: Curriculum expert - will develop instructional materials necessary for 1211K and 1212K laboratories. Will aid in development of a master course schedule for CHEM 1212K Laboratory.

Christin Collins: Library Faculty - will identify, review, and select various OERs for consideration for adoption; will present OERs to faculty.

Sharryse Henderson: Administrative and research support – will submit grant proposal, grant updates, and final grant report. Will work with the GHC Office of Planning, Assessment, Accreditation, and Research to develop and administer student and faculty surveys, data collection, and data analysis.

Dr. Greg Ford: Research support – will submit formal proposal to the GHC Institutional Review Board for approval prior to the administration of student surveys and collection of student data.
Quantitative & Qualitative Measures: Throughout the length of this project, we will assess the impact of switching from proprietary course materials to OER and no-cost supplemental materials. Both quantitative and qualitative data will be collected. Quantitative measures will include: (1) a comparison of homework assignment, midterm exam, final exam, and overall course grades to previous semesters, (2) comparison of DFW rates (assigned course grade of D, F, or a withdrawal) to previous semesters, (3) comparison of number of students who successfully complete the Principles of Chemistry 2-course sequence at GHC, and (4) comparison of content usage data collected from D2L in transformed course versus non-transformed courses. Qualitative measures will utilize pre- and post- course student surveys to determine (1) frequency of use of OER, (2) ease of use and accessibility, and (3) overall opinion of the OER transformation. Student surveys will also be accessed to determine use and effectiveness of multimedia resources. All data will be compiled, analyzed, and presented in a final project report in the Fall of 2017.

Timeline:

| Spring 2017 | • Attend required “Kick Off” Meeting
| | • Review and adopt OpenStax textbook or other appropriate OER
| | • Identify topics/concepts that require adaptation and creation of supplemental materials
| | • Grant team members participate in training with OpenStax staff, attend webinar(s) hosted by USG staff on the use of Galileo Open Learning Materials website, and view archived web events offered by adaptive and authoring software companies
| | • Begin to create CHEM 1211K and CHEM 1212K ancillary materials, screencasts, and multimedia instructional resources
| | • Begin to design CHEM 1211K and CHEM 1212K laboratory experiments and schedule to parallel OpenStax textbook |
We are requesting grant funding according to the Large-Scale Transformation category for department-wide adoption of OER textbook for multiple courses and sections of CHEM 1211K and CHEM 1212K with enrollments of 500 students or more per academic year. The total amount of funding requested to support this project is: $29,826

<table>
<thead>
<tr>
<th>NAME</th>
<th>ROLE/JUSTIFICATION</th>
<th>AMOUNT</th>
</tr>
</thead>
</table>

| Summer 2017 | • Redesign CHEM 1211K and CHEM 1212K course master syllabi for OpenStax textbook
• Continue development of CHEM 1211K and CHEM 1212K instructional materials for lecture and laboratory components of the courses
• Develop pre and post-course surveys for students and methodology for delivery and analytics
• Meet with all full-time and part-time chemistry faculty and laboratory staff to train and prepare for implementation of Openstax textbook and all newly created ancillary materials
• Upload newly created course materials into the college’s Learning Management System (D2L) for dissemination and delivery to division faculty and students |

| Fall 2017 | • Conduct CHEM 1211K and CHEM 1212K courses using OpenStax textbook and newly created screencasts and instructional materials
• Administer student pre and post surveys
• Revise and edit instructional screencasts based on student and faculty feedback
• Compile and analyze Fall 2017 data at the conclusion of the semester
• Generate final report to summarize study findings
• Upload newly created instructional materials to MERLOT II, OpenStax CNS, and Galileo Open Learning Materials repository |
<table>
<thead>
<tr>
<th>Name</th>
<th>Role description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Sarah Tesar</td>
<td>Co-Principal investigator – release time for creation of open resource materials for CHEM 1211K</td>
<td>$5000</td>
</tr>
<tr>
<td>Dr. Allen Easton</td>
<td>Co-Principal investigator – release time for creation of open resource materials for CHEM 1212K</td>
<td>$5000</td>
</tr>
<tr>
<td>Erin Kingston</td>
<td>Subject matter expert – release time for creation of multimedia resources for both CHEM 1211K and 1212K</td>
<td>$5000</td>
</tr>
<tr>
<td>Charles Garrison</td>
<td>Subject matter expert - release time for creation of open resource materials for the CHEM 1211K laboratory</td>
<td>$2500</td>
</tr>
<tr>
<td>Joseph Collins</td>
<td>Subject matter expert - release time for creation of open resource materials for the CHEM 1212K laboratory</td>
<td>$2500</td>
</tr>
<tr>
<td>Christin Collins</td>
<td>Library Faculty - release time to identify, review, and present OER resources to Chemistry faculty for consideration and adoption; preference will be given to OpenStax</td>
<td>$2500</td>
</tr>
<tr>
<td>Sharryse Henderson</td>
<td>Research support - release time to oversee development and dissemination of surveys, data collection, and analysis. Submit grant proposal, routine updates, and final grant report</td>
<td>$2500</td>
</tr>
<tr>
<td>Dr. Greg Ford</td>
<td>Research support - generate IRB proposal and present project to the Institutional Review Board for approval before implementation</td>
<td>$2000</td>
</tr>
</tbody>
</table>
Sustainability Plan:

Principles of chemistry I (1211K) and II (1212K) will always be offered at GHC, as they are required for science majors, as well as fulfill the lab science Area D requirement for non-science majors. Any course materials created by the funding of this grant will be made freely available under the Creative Commons license for the public to access and use. Course materials will be reviewed annually and any needed updates will be made. Links to online resources will be checked for availability and updated as needed. In addition, we will contribute to the quality of the OpenStax project by continuing to monitor and report any and all errors found in the OpenStax chemistry textbook to the editor-in-chief (David Harris). Once the transformation of CHEM 1211K/1212K is complete, we will explore the possibility of expanding some of the successful changes to CHEM 1151K/1152K, a sequence frequently taken by health science majors that also fulfills the Area D lab science for non-science majors.

<table>
<thead>
<tr>
<th>Materials and Supplies</th>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2) iPad Pro 12.9 inch with 128 GB for recording multimedia screencasts - $899 each, (2) Apple Pencil for iPad Pro - $99 each, (1) Adaptive and authoring software license - $30</td>
<td>$2026</td>
<td></td>
</tr>
<tr>
<td>Travel</td>
<td>Travel funds for Drs. Tesar and Easton to travel to the ALG Kick-Off Meeting in Macon, GA on January 30, 2017</td>
<td>$800</td>
</tr>
<tr>
<td>GRAND TOTAL</td>
<td></td>
<td>$29,826</td>
</tr>
</tbody>
</table>
September 1, 2016

Dear ALG Grants Committee Members:

I am pleased to write this letter in support of Assistant Professor of Chemistry Sarah Tesar, Associate Professor of Chemistry Allen Easton, Instructor of Chemistry Erin Kingston, and Lab Coordinators Charles Garrison and Joseph Collins, as they seek grant funding to redesign two courses, CHEM 1211K and 1212K, using open educational resources and for the creation of a high-impact video series to accompany those. There are numerous reasons of efficiency, pedagogy, and instructional transformation which compel me to support this initiative.

First, all of the grant proposers will engage in a thoughtful process that will broadly affect the student body at Georgia Highlands College. We expect to offer at least 32 sections of these courses across instructional sites at GHC in AY 2016. With an average 22 students in each section, over 700 students per semester will be advantaged by this effort through the funded grant.

Second, money saved through this plan’s implementation will produce enormous savings. Through redirected use of student money spent on $238.75 per book, texts will not be nearly the economic obstacle that we experience today. When we consider that 64% of our students at Georgia Highlands College have family incomes at or below the poverty level, the need is even greater. Research shows us that there are both direct and indirect links to retention, progression and completion when we remove impediments such as this major economic stressor. Clearly, it impacts student success, especially for those students who can’t afford the text and forego the learning that only an in-class, usable, supportive text and other high quality instructional materials can provide.

Finally, this affordable learning grant will serve as a catalyst for enhanced teaching and learning. It will serve as a springboard for innovation on the part of faculty and staff who work to make those materials more creative, applied, and relevant in today’s chemistry classroom. It will send the message that GHC faculty care about their students, economically, socially and intellectually. It will urge students to persist and to complete in a discipline that too often is a stumbling block to college completion, as it provides one more vehicle to attack the unsettling D-F-W grade rates in this gateway course for all of our science majors, plus pre-nursing and pre-dental hygiene students. With more than 700 declared pre-nursing majors alone, it is unconscionable to not move swiftly in this initiative’s direction.

I wholeheartedly endorse this ALG Transformation Grant application from these forward-thinking, action-oriented chemistry faculty and staff. Their plan is noteworthy and laudable. Please allow them to continue their essential work through the approval of the grant.

Sincerely,

Renva Watterson, Ed.D.
Affordable Learning Georgia Textbook Transformation Grants

Rounds Six, Seven, and Eight

For Implementations beginning Fall Semester 2016
Running Through Fall Semester 2017

Proposal Form and Narrative

<table>
<thead>
<tr>
<th>Submitter Name</th>
<th>Sharryse Henderson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submitter Title</td>
<td>Professor</td>
</tr>
<tr>
<td>Submitter Email</td>
<td>shenders@highlands.edu</td>
</tr>
<tr>
<td>Submitter Phone Number</td>
<td>678-872-8112</td>
</tr>
<tr>
<td>Submitter Campus Role</td>
<td>Other; Science Coordinator</td>
</tr>
<tr>
<td>Applicant Name</td>
<td>Sarah Tesar, Ph.D.</td>
</tr>
<tr>
<td>Applicant Email</td>
<td>stesar@highlands.edu</td>
</tr>
<tr>
<td>Applicant Phone Number</td>
<td>678-872-8070</td>
</tr>
<tr>
<td>Primary Appointment Title</td>
<td>Assistant Professor of Chemistry</td>
</tr>
<tr>
<td>Institution Name(s)</td>
<td>Georgia Highlands College</td>
</tr>
<tr>
<td>Team Members</td>
<td>Allen Easton, Ph.D., Associate Professor of Chemistry, Division of Natural Science and Physical Education, Georgia Highlands College, aeaston@highlands.edu</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Sarah Tesar, Ph.D., Assistant Professor of Chemistry, Division of Natural Science and Physical Education, Georgia Highlands College, stesar@highlands.edu</td>
</tr>
<tr>
<td></td>
<td>Erin Kingston, Instructor of Chemistry, Division of Natural Science and Physical Education, Georgia Highlands College, ekingston@highlands.edu</td>
</tr>
<tr>
<td></td>
<td>Charles Garrison, Laboratory Coordinator, Division of Natural Science and Physical Education, Georgia Highlands College, cgarrison@highlands.edu</td>
</tr>
<tr>
<td></td>
<td>Joseph Collins, Laboratory Coordinator, Division of Natural Science and Physical Education, Georgia Highlands College, jcollins@highlands.edu</td>
</tr>
<tr>
<td></td>
<td>Christin Collins, Assistant Librarian of Public Services, Paulding Campus Library, Georgia Highlands College, ccollins@highlands.edu</td>
</tr>
<tr>
<td></td>
<td>Sharryse Henderson, Professor of Biology and Science Coordinator, Division of Natural Science and Physical Education, Georgia Highlands College, shenders@highlands.edu</td>
</tr>
<tr>
<td></td>
<td>Greg Ford, Ph.D. Dean and Associate Professor, Division of Natural Science and Physical Education, Georgia Highlands College, gford@highlands.edu</td>
</tr>
<tr>
<td>Sponsor, Title, Department, Institution</td>
<td>Renva Watterson, Ed.D., Vice President for Academic Affairs, Georgia Highlands College</td>
</tr>
<tr>
<td>Proposal Title</td>
<td>ALG Textbook Transformation Project to Adopt an Open Educational Resource – OpenStax – for Principles of Chemistry I and II (CHEM 1211K and 1212K) at Georgia Highlands College</td>
</tr>
<tr>
<td>Course Names, Course Numbers and Semesters</td>
<td>CHEM 1211K – Principles of Chemistry I and CHEM 1212K – Principles of Chemistry II. Both courses are intended for science majors and are offered in fall, spring, and summer semesters. Project will begin Spring 2017 and conclude Fall</td>
</tr>
<tr>
<td>Offered</td>
<td>2017</td>
</tr>
<tr>
<td>--------------------</td>
<td>------</td>
</tr>
<tr>
<td>Final Semester of Instruction</td>
<td>Fall 2017</td>
</tr>
<tr>
<td>Average Number of Students Per Course Section</td>
<td>23</td>
</tr>
<tr>
<td>Number of Course Sections Affected by Implementation in Academic Year</td>
<td>32</td>
</tr>
<tr>
<td>Total Number of Students Affected by Implementation in Academic Year</td>
<td>736</td>
</tr>
<tr>
<td>Award Category (pick one)</td>
<td>☒ No-or-Low-Cost-to-Students Learning Materials</td>
</tr>
<tr>
<td>List the original course materials for students (including title, whether optional or required, & cost for each item)</td>
<td>Currently Required Textbook: Chemistry, 10th Edition with OWLv2 by Whitten, Davis, Peck, and Stanley, hybrid edition. $238.75</td>
</tr>
<tr>
<td>Requested Amount of Funding</td>
<td>$29,826</td>
</tr>
<tr>
<td>Original Per Student Cost</td>
<td>$275.50</td>
</tr>
<tr>
<td>Description</td>
<td>Details</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>Post-Proposal Cost Per Students:</td>
<td>$76.00 - $77.00</td>
</tr>
<tr>
<td>Projected Per Student Savings</td>
<td>$180.25</td>
</tr>
<tr>
<td>Projected Total Annual Student Savings</td>
<td>$132,664</td>
</tr>
<tr>
<td>Creation and Hosting Platforms Used</td>
<td>Desire2Learn (D2L) by Brightspace will be used to share with faculty within the division and with students. Furthermore, the following websites will be used to host and share newly created ancillary materials with the public:</td>
</tr>
<tr>
<td></td>
<td>1) MERLOT II</td>
</tr>
<tr>
<td></td>
<td>2) GALILEO Open Learning Materials repository</td>
</tr>
<tr>
<td></td>
<td>3) OpenStax Community Resource Partnership with OER Commons</td>
</tr>
</tbody>
</table>
NARRATIVE
1.1 PROJECT GOALS

The United State Public Interest Research Group (USPIRG) surveyed college students across the US and concluded that the rising cost of college texts has a direct impact on student enrollment in and progression through college (1). In their report, *Fixing the Broken Textbook Market*, 65% of those surveyed decided not to purchase a textbook for at least one class and of those students, 94% believed that not purchasing a text would hurt their grade. Nearly half the students surveyed stated that the price of textbooks directly impacted their decision regarding the number and type of courses in which to enroll. Studies have also shown a correlation between not purchasing textbooks and increased likelihood of failure or withdrawal from courses (2). Furthermore, the Bureau of Labor Statistics reports that the cost of college textbooks has risen three times faster than the rate of inflation in the last 30 years - far outpacing health care expenses and home prices (3). Exacerbating this issue is that fact that only five publishers currently control 85% of the textbook market and the majority of publishers are marketing textbooks to faculty rather than to students who face numerous financial barriers to success in college (4). Obviously, there is a great need to remove the barriers that students face in pursuing higher education particularly in the STEM courses.

To address these barriers to success, our project goals are:

1. Decrease the financial burden of students enrolled in CHEM 1211K and CHEM 1212K by adopting and incorporating a no-cost textbook published by OpenStax at Rice University.

2. Increase retention and completion of students at Georgia Highlands College by creating and implementing multimedia instructional screencasts to supplement adopted OER for CHEM 1211K and 1212K.

3. Increase student access to course materials by offering all course materials in an open format via the course learning management system.

4. Survey enrolled students and teaching faculty to determine 1) the ease of availability, 2) quality of resources, and 3) helpfulness of OERs in meeting student learning outcomes.

5. Publish all newly created course materials on open resource websites such as MERLOT II, Galileo Open Learning Materials repository, and OpenStax Community Resource Partnership so that they are readily accessible to the public.
1.2 STATEMENT OF TRANSFORMATION

Georgia Highlands College (GHC) is a limited four-year college in the University System of Georgia that serves more than 6000 students throughout northwest Georgia and northeast Alabama. GHC offers transfer associate degree programs, career associate degree programs, and targeted baccalaureate degree programs. GHC has five campuses that provide instruction which allows for a unique opportunity to develop and implement new teaching materials and pedagogy and compare student data across campuses. This multi-site configuration also provides an opportunity to replicate and expand projects across campuses to prove scalability. Specifically, CHEM 1211K and CHEM 1212K constitute a science sequence that satisfies AREA D core curriculum science requirements in the University System of Georgia and the Technical College System of Georgia. Furthermore, CHEM 1211K/1212K are the recommended in all GHC science pathways maps as first and second semester courses for all STEM majors. Altogether, this chemistry sequence serves about 700-800 students per academic year at GHC.

Mean annual household income in the geographic areas served by GHC is about $61,927 (5). According to the 2014-2015 Georgia Highlands College Fact Book, the average student at GHC is a 23.9 year-old female. Furthermore, approximately 45.4% of GHC students are eligible for Pell Grant. Many students are non-traditional students who are concurrently working a full-time job in addition to scholarly endeavors (6). Low-cost course materials will increase access to the chemistry courses taught at GHC and should lead to a higher rate of utilization of the resources (7). Currently, the cost of course materials for chemistry sequences at GHC use proprietary textbooks packaged together with online homework solutions at a cost of over $238 each. Furthermore, students lose access to the e-text after 18-24 months. The price of course materials makes the course an unnecessarily expensive barrier to the first year of college rather than a valued entry level science course that builds study skills. The course transformation will save students over $132,000 and provide students with a valuable, peer-reviewed, up-to-date reference at no cost.

This grant will fund the replacement of the current proprietary text with a free text and a lower-cost textbook independent homework system. The course redesign will allow students to save money and have future access a valuable reference, one that they will not feel the need to resell to recover funds. Furthermore, this grant will fund the redesign of course materials to complement the OpenStax Chemistry textbook and also the creation of a series of multimedia instructional videos to accompany the OpenStax Chemistry text. Studies have shown that multimedia resources are productive methods of conveying concepts and ideas (8).
1.3 TRANSFORMATION ACTION PLAN

The action plan will consist of procuring and adopting an OER followed by evaluation of the OER to determine which materials may need to be adapted and whether new instructional materials need to be created in order to support the OER. After implementation, quantitative and qualitative data will be collected to determine the efficacy of the OER and related materials. The following activities will be conducted during the project:

Approval: Team members will submit a formal proposal to the GHC Institutional Review Board (IRB). Pre and Post course surveys will be generated and presented to the IRB for approval prior to administration. Semester updates and a final report will be submitted to the IRB so that the college is fully informed about the progress and impact of this project.

Training: Team members will participate in various forms of training prior to and during implementation of this project. At least two team members will travel to Macon to attend the Kick-Off Meeting. Team members will participate in webinars hosted by USG staff on Galileo Open Learning Materials repository. Team members will receive training from OpenStax staff (if it is the chosen OER). Team members will view archived videos from adaptive and authoring software companies available on the ALG Textbook Transformation website in order to identify appropriate software sources and prepare for the creation of multimedia instructional resources.

Review and Adoption: Open Educational Resources will be identified and pooled for review by the team. Possible sources will include OER’s already available through OpenStax, CNX, Cool4Ed, Merlot, Saylor Academy, GALILEO, Lumen Learning, and others. Preference will be given to OpenStax but final decision will be made on the basis of current student learning outcomes for the transformed course(s), applicability in the classroom, and teaching experience of team members.

Evaluation of Selected OER: Once appropriate OER is selected, we will examine how and if these materials can be utilized in both face-to-face and online settings. Materials will then be organized into various areas of specialty and assigned to individual team members for review. Team members will determine if the content area needs to be adapted or if additional resources need to be created.

Adaptation and Creation: Each team member will adapt instructional materials in the content areas to which they are assigned. Any instructional materials found to be lacking, will be created and then evaluated by the team. Team members will create multimedia screencasts for ALL content areas.

Course Syllabi: Master syllabi for each course will be created and made available for faculty and students on D2L. The master syllabi will 1) provide consistency of instruction and assessment in all sections of the course, 2) provide clear instructions on how to access newly created course materials, 3) provide a list of assigned readings and
associated deadlines from the OER textbook, and 4) a list of assigned multimedia
screencasts and dates of use.

Course Evaluation/Redesign: After use of OER and newly created instructional
materials begin, the team will evaluate the effectiveness of the new materials and
feasibility for the students. This will include 1) a comparison of grades from when the
previous textbook was used and during the incorporation of new materials and 2) distribution of
surveys to determine how the students and faculty feel about the implementation and use of
the new material. It will also include adjustments in the course material and syllabi, omission
of unnecessary material, and creation/adopterion of new material where needed.

Publish: At the conclusion of the grant cycle, all materials created as a result of this
project will be published for access by the public on a variety of open resource
websites. Some of these websites include: MERLOT II, Galileo Open Learning Materials
repository, and OpenStax Community Resource Partnership.

Each of the following team members will take an active role in implementing the
Transformation Action Plan:

- **Dr. Sarah Tesar:** Co-PI and curriculum expert - will administer project from
beginning to end, including: identification and adoption of appropriate OERs,
development of related course materials, syllabi revision, administration of
surveys and data collection, and creation of the final report. Will also oversee the
development of multimedia resources.

- **Dr. Allen Easton:** Co-PI and curriculum expert - will administer the project
from beginning to end, including: identification and adoption of appropriate
OERs, development of related course materials, syllabus revision, administration
of surveys and data collection, and creation of the final report.

- **Erin Kingston:** Curriculum expert - will participate in the development of
multimedia resources, work with library faculty to identify, review, select, and
adopt appropriate OERs for CHEM 1211K and 1212K, and assist in the creation
of surveys.

- **Charles Garrison:** Curriculum expert - chemistry laboratory coordinator;
will develop instructional materials necessary for 1211K and 1212K laboratories.
Will aid in development of a master course schedule for CHEM 1211K Laboratory.

- **Joseph Collins:** Curriculum expert - will develop instructional materials
necessary for 1211K and 1212K laboratories. Will aid in development of a master
course schedule for CHEM 1212K Laboratory.

- **Christin Collins:** Library Faculty - will identify, review, and select various
OERs for consideration for adoption; will present OERs to faculty.

- **Sharryse Henderson:** Administrative and research support – will submit
grant proposal, grant updates, and final grant report. Will work with the GHC
Office of Planning, Assessment, Accreditation, and Research to develop and
administer student and faculty surveys, data collection, and data analysis.
- **Dr. Greg Ford**: Research support – will submit formal proposal to the GHC Institutional Review Board for approval prior to the administration of student surveys and collection of student data.
1.4 QUANTITATIVE AND QUALITATIVE MEASURES

Throughout the length of this project, we will assess the impact of switching from proprietary course materials to OER and no-cost supplemental materials. Both quantitative and qualitative data will be collected. Quantitative measures will include: (1) a comparison of homework assignment, midterm exam, final exam, and overall course grades to previous semesters, (2) comparison of DFW rates (assigned course grade of D, F, or a withdrawal) to previous semesters, (3) comparison of number of students who successfully complete the Principles of Chemistry 2-course sequence at GHC, and (4) comparison of content usage data collected from D2L in transformed course versus non-transformed courses. Qualitative measures will utilize pre- and post- course student surveys to determine (1) frequency of use of OER, (2) ease of use and accessibility, and (3) overall opinion of the OER transformation. Student surveys will also be accessed to determine use and effectiveness of multimedia resources. All data will be compiled, analyzed, and presented in a final project report in the Fall of 2017.
1.5 TIMELINE

| Spring 2017 | • Attend required "Kick Off" Meeting
• Review and adopt OpenStax textbook or other appropriate OER
• Identify topics/concepts that require adaptation and creation of supplemental materials
• Grant team members participate in training with OpenStax staff, attend webinar(s) hosted by USG staff on the use of Galileo Open Learning Materials website, and view archived web events offered by adaptive and authoring software companies
• Begin to create CHEM 1211K and CHEM 1212K ancillary materials, screencasts, and multimedia instructional resources
• Begin to design CHEM 1211K and CHEM 1212K laboratory experiments and schedule to parallel OpenStax textbook |
| Summer 2017 | • Redesign CHEM 1211K and CHEM 1212K course master syllabi for OpenStax textbook
• Continue development of CHEM 1211K and CHEM 1212K instructional materials for lecture and laboratory components of the courses
• Develop pre and post-course surveys for students and methodology for delivery and analytics
• Meet with all full-time and part-time chemistry faculty and laboratory staff to train and prepare for implementation of OpenStax textbook and all newly created ancillary materials
• Upload newly created course materials into the college's Learning Management System (D2L) for dissemination and delivery to division faculty and students |
| Fall 2017 | • Conduct CHEM 1211K and CHEM 1212K courses using OpenStax textbook and newly created screencasts and instructional materials
• Administer student pre and post surveys
• Revise and edit instructional screencasts based on student and faculty feedback
• Compile and analyze Fall 2017 data at the conclusion of the semester
• Generate final report to summarize study findings
• Upload newly created instructional materials to MERLOT II, OpenStax CNS, and Galileo Open Learning Materials repository |
1.6 **BUDGET**

We are requesting grant funding according to the **Large-Scale Transformation** category for department-wide adoption of OER textbook for multiple courses and sections of CHEM 1211K and CHEM 1212K with enrollments of 500 students or more per academic year. The total amount of funding requested to support this project is: **$29,826**

<table>
<thead>
<tr>
<th>NAME</th>
<th>ROLE/JUSTIFICATION</th>
<th>AMOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Sarah Tesar</td>
<td>Co-Principal investigator – release time for creation of open resource materials for CHEM 1211K</td>
<td>$5000</td>
</tr>
<tr>
<td>Dr. Allen Easton</td>
<td>Co-Principal investigator – release time for creation of open resource materials for CHEM 1212K</td>
<td>$5000</td>
</tr>
<tr>
<td>Ms. Erin Kingston</td>
<td>Subject matter expert – release time for creation of multimedia resources for both CHEM 1211K and CHEM 1212K</td>
<td>$5000</td>
</tr>
<tr>
<td>Charles Garrison</td>
<td>Subject matter expert – creation of open resource material for the CHEM 1211K laboratory</td>
<td>$2500</td>
</tr>
<tr>
<td>Joseph Collins</td>
<td>Subject matter expert – creation of open resource materials for the CHEM 1212K laboratory</td>
<td>$2500</td>
</tr>
<tr>
<td>Ms. Christin Collins</td>
<td>Library faculty – release time to identify, review, and present OER resources to Chemistry faculty for consideration and adoption; preference will be given to OpenStax</td>
<td>$2500</td>
</tr>
<tr>
<td>Ms. Sharryse Henderson</td>
<td>Research support – release time to oversee development and dissemination of surveys, data collection, and analysis. Submit grant proposal, routine updates, and final grant report</td>
<td>$2500</td>
</tr>
<tr>
<td>Dr. Greg Ford</td>
<td>Research support – release time to generate IRB proposal and present project to the Institutional Review Board for approval before implementation</td>
<td>$2000</td>
</tr>
<tr>
<td>Materials and Supplies</td>
<td>(2) iPad Pro 12.9 inch with 128 GB for recording multimedia screencasts - $899 each (2) Apple Pencil for iPad Pro - $99 each (1) Adaptive and authoring software license - $30</td>
<td>$2026</td>
</tr>
<tr>
<td>Travel</td>
<td>Travel funds for Drs. Tesar and Easton to travel to the ALG Kick-Off Meeting in Macon GA on January 30, 2017</td>
<td>$800</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>GRAND TOTAL</td>
<td></td>
<td>$29,826</td>
</tr>
</tbody>
</table>
1.7 SUSTAINABILITY PLAN

Principles of chemistry I (1211K) and II (1212K) will always be offered at GHC, as they are required for science majors and fulfill the lab science Area D requirement for non-science majors. Any course materials generated by funding from this grant will be made freely available under the Creative Commons license for the public to access and use. Course materials will be reviewed annually and any needed updates will be made. Links to online resources will be checked for availability and updated as needed. In addition, we will contribute to the quality of the OpenStax project by continuing to monitor and report any and all errors found in the OpenStax chemistry textbook to the editor-in-chief (David Harris). Once the transformation of CHEM 1211K/1212K is complete, we will explore the possibility of expanding some of the successful changes to CHEM 1151K/1152K, a sequence frequently taken by health science majors that also fulfills the Area D lab science for non-science majors.
1.8 REFERENCES & ATTACHMENTS

5. United States Census Bureau – American Community Survey. 2015. Available at: https://factfinder.census.gov/bkmk/navigation/1.0/en/d_dataset:ACS_15_5YR/d_product_type:DATA_PROFILE/

